麻省理工学院:研究增强人工智能模型的周边视觉帮助驾驶员发现未知风险

来源:盖世汽车  时间:2024-03-11 15:15  浏览量:8861  作者:夏冰   阅读量:4105   

盖世汽车讯 受益于周边视觉,人类能够看到不在自己视线范围内的形体。尽管不那么详细,但这扩大了人们的视野,在许多情况下都很有用,例如检测从侧面接近用户汽车的车辆。与人类不同,人工智能(AI)没有周边视觉,为计算机视觉模型配备这种能力,有助于更有效地检测周边风险,或预测人类驾驶员是否会注意到迎面而来的物体。

????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????

据外媒报道,麻省理工学院的研究人员开发出图像数据集,从而能够在机器学习模型中模拟周边视觉。他们发现,使用该数据集来训练模型,可以提高模型检测视觉边缘物体的能力,尽管其表现仍然比不上人类。结果还表明,与人类不同,物体大小和场景中的视觉混乱程度,都不会对AI性能产生较大影响。

研究人员Vasha DuTell表示:“研究人员测试了很多不同的模型,通过训练它们会变得更好一点,但还是无法达到与人类相当的程度。由此产生的问题是:这些模型缺少什么?”如果研究人员能够解决这个问题,可能有助于建立机器学习模型,使之能够更像人类一样地看待世界。除了提高驾驶员安全性,此类模型还可用于开发更便于查看的显示器。

郑重声明:此文内容为本网站转载企业宣传资讯,目的在于传播更多信息,与本站立场无关。仅供读者参考,并请自行核实相关内容。

图文推荐

  • 北京文化产业园区推介会在中国华电天宁1号文化科技创新园召开

    北京文化产业园区推介

  • 上海自贸区临港新片区政策宣讲会在湾谷科技园举行

    上海自贸区临港新片区